

ENCONTRO ANTF DE FERRONAS — EDIÇÃO DIGITAL —

Analytically Investigating Derailment Incidents

Presented by: Walter Rosenberger, Scientist

TTCI – Transportation Technology Center, Inc.

Overview

- Investigating incidents scientifically is the best way to prevent future incidents.
- Gather data from Infrastructure, Equipment, and Operations viewpoints.
- Analyzing this data will point to a hypothesis.
- Use simulations as needed to "recreate" what happened.
- Confirm the data, analyses, and simulations support your hypothesis.
- Develop a cause statement that expresses the root cause(s) and conditions that led to the derailment.

Infrastructure

Analyzing Track Data

Track Analysis

- Obtain digital copy of most recent track geometry test.
 - Review and plot in MultiVu or a spreadsheet program
- Obtain and plot track station measurements.
 - "Track notes" usually taken after an incident
 - Gage, Crosslevel, Alignment measured with level board and 62-ft chord or equivalent
- Plot station measurements and track geometry test data together to document POD location and confirm conditions at the time of the incident.

Analyzing Track Notes & Track Geometry Data

Equipment

Assessing Vehicle Conditions

Equipment Assessment

- Determine the first vehicle and first wheel to derail.
- Measure key vehicle conditions as much as possible.
 - Suspension components, side bearings, wheel profiles, etc.
- Review wayside detector data
 - Wheel force detectors (i.e., "WILD" data)
 - Optical geometry detectors
 - Wheel profile detectors
- Synthesize all available information to deduce car condition, especially if simulations will be needed.

Equipment Inspection

MECHANICAL DERAILMENT INSPECTION SHEET (STANDARD CAR) Generally, piston rod Date: 7-17-14 Inspector: W. D. FosTexTrain: 2.3 6 Div.: UA 1. Car Initial and Number: ETTx 70/262 Inspection Location: ROANOKC VA Car Type: Leading End: A □ or B ☒ Truck Center Distance: _ 6 4 ' 2. Wheel Conditions (AAR Rule 41): A. Tread Profile: Measure tread hollowing with "Tread Worn Hollow Gage" (Rule 41) NOT Tread Thickness B. Flange Wear: (Finger gage) A-TRUCK A-TRUCK 0 0 0 R3 Rt R4 0 C. Tapeline Circumference: [inches] D. Back-to-Back Wheel Spacing at 3 locations: [inches]

89 1/8

R4

88 14

R2

R3

52 15/16 53

52 15/16 52

52 15/16 53

52 1916

53

	Side Bearings: (AAR Rule 62) Type: Non-Contacting: Roller □ or Solid Block □ - OR- Constant		
		. [YES NO
	Side Bearing Clearance (Non-Contacting) or Side Bearing Set-Up H	eight	B-TRUCK A-TRUCK Center Plate Height* / 1/2. / 1/2. Center Bowl Depth** / 1/4 / 1/4
	BL BR AL AR 5 1/8 in 4 1/6 in 4 1/6 in 4 1/6 in		 Measure to centerplate casting (horizontal surface) not to toe of plate fillet weld. Measure to top of shim(s), if present. Measure at most shallow location.
			B. Center plate and bolster bowl diameters: (inches) Longitudinal Lateral A-End Center Plate Diameter 1,3,3/4 1,3,3/4
٠.	-,,	Field N	A-find Bolster Bowl Diameter 14/9 14/9 B-End Center Plate Diameter 13/44 13/9 B-End Bolster Bowl Diameter 14/9 14/9 Note conditions such as broken rim liners or uneven centerplate sides.
	Type: National Swing Motion Buckeye Other: Friction Wedge Type: Steel or Non-Metallic Backed Spring Arrangement: 505,0,3-05-1,0,5 5 7 7 7 7 7 8 5 8 7 7 7 7 7 7 7 7 7 7		C. Contact between center plate fillet and edge of truck bolster rim (Yes/No)? B-Truck: A-Truck:
	Note number and location of any missing or additional coils differing from		. Center plate lubrication: (jack car and inspect)
	Friction Wedge Rise Measurements: [inches] ***Important Measuren B-TRUCK A-TRUCK BL BR AL AR Measure from top "land shoulder on RideMaster top of bolster surface. ()	" on R and B	B-End A-End Dry
	Column Wear Plate Condition: (Note hollow wear depth, unusual wear p		Galled
	L1 L2 R1 R2 L3 L4	F 9	Couplers and Draft Gear: Coupler Style (e.g., "E60" "E67" etc.): E69
			Cushion Unit: YES NO Cushion Unit: End-of-Car Center Sill Cushion unit travel [inches] and markings: 10 Esc.

10. Other Observations:

(Built-up tread, spalling, shelling, etc.)

Wayside Data Analysis

Operations

Analyzing Train Handling

Analyze Train Handling and Makeup

- Obtain details of the train consist.
 - Car/wagon types, weights, and draft gear types
 - Locomotive types, active in power or braking
- Obtain records of train operation.
 - Event recorder files, locomotive GPS coordinates and final resting location

Train Consist: Tonnage & Draft Gear Profile

Analyzing Event Recoder Data

Simulations

Train Dynamics, Vehicle Dynamics

TOES™ Simulation Results

NUCARS® Simulation Results

Summary

- Collect, assess, and analyze the evidence, measurements, and data
 - Do you have the right data, and is it complete?
 - What is the data telling you?
- Understand and apply the physics
 - L/V ratio, Nadal limit, rolling radius differential, etc.
- Run the simulations as needed
 - O TOES™, NUCARS®
- Develop and report the cause statement

Thank You!

Realização

Apoio editorial

Organização

