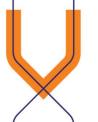
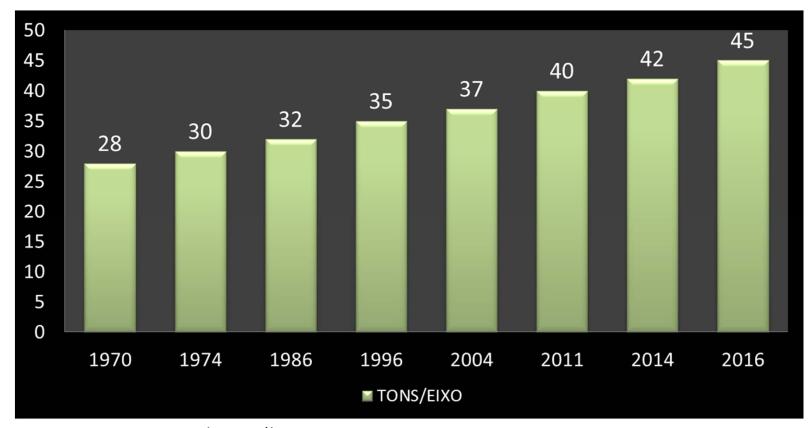
FERROVIAS

NOVAS IDEIAS P/ NOVOS DESAFIOS

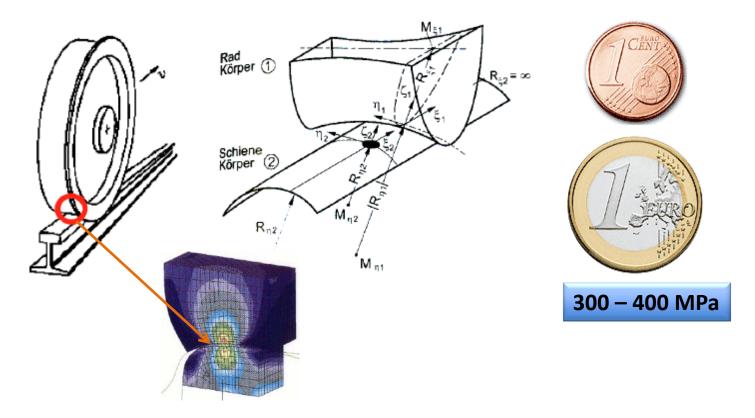

DESENVOLVIMENTO DE RODA MICROLIGADA COM NIÓBIO PARA TRANSPORTE HEAVY HAUL

Eng. (MSc) Domingos José Minicucci

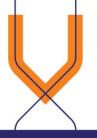
CONTEÚDO:


- Evolução da carga por eixo na Austrália
- Contato roda trilho
- Especificação AAR para rodas classe D microligadas
- Nióbio
- Desenvolvimento da roda com nióbio
- Resultados
- Conclusão

EVOLUÇÃO DA CARGA POR EIXO NA AUSTRÁLIA


Fonte: IHHA 2015 – Perth Austrália

CONTATO RODA - TRILHO



Metallurgical characterization of advanced wheel steels for freight cars

Andrea Ghidini¹, Jürgen Schneider¹, Markus Diener²

CONTATO RODA - TRILHO

Shelling

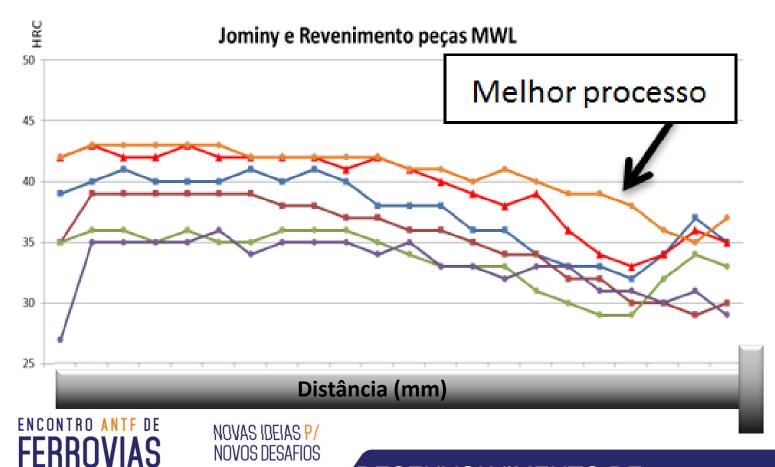
ESPECIFICAÇÃO AAR PARA RODAS CLASSE D MICROLIGADAS

PROPRIEDADES MECÂNICAS – AAR CLASSE D (APÊNDICE – C)				
	Temperatura Ambiente	538 °C (1.000 °F)		
Tensão de Ruptura (MPa)	> 1083	> 483		
Tensão de Escoamento (MPa)	> 760	> 345		
Alongamento (%)	> 14	> 20		
Redução de Área (%)	> 15	> 40		
Tenacidade a Fratura (MPa \sqrt{m})	> 40	N/A		
Dureza no aro externo (Brinell)	341 - 415	N/A		

Aços microligados contém até 0,05% de liga Krauss, G. – Principles of Heat Treatment of Steel (pag. 180)

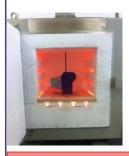
NIÓBIO

- O Brasil é o maior produtor de nióbio do mundo
- A maior reserva do mundo esta em Araxá MG
- A principal função do nióbio é o refino de grão
- O nióbio atua nos contornos de grão restringindo seu crescimento e atrasando o processo de recristalização
- Pesquisa feita com convênio MWL UNICAMP USP FAPESP
- Auxílio da CBMM (Companhia Brasileira de Metais e Metalurgia)



DESENVOLVIMENTO DA RODA COM NIÓBIO

Composição química e tratamento térmico

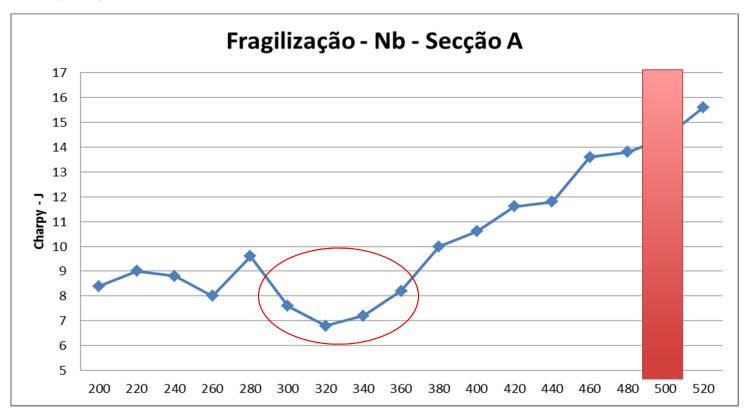

DESENVOLVIMENTO DE RODA MICROLIGADA COM NIÓBIO

MWL Brasil

Rodas & Eixos Ltda.

DESENVOLVIMENTO DA RODA COM NIÓBIO

- Fragilização da martensita revenida:
 - É um fenômeno metalúrgico que ocorre em certos tipos de aço onde determinadas faixas de temperatura de revenimento podem provocar fragilização da peça.
 - Esta fragilização normalmente é detectada no ensaio de Charpy
 - A literatura mostra que o teor de carbono tem forte influência na distribuição dos carbonetos na matriz que interferem no comportamento do aço.
 - O mecanismo de fratura depende de interações complexas entre a composição química e o tratamento térmico.
 - A norma AAR não determina a temperatura mínima de revenimento.



DESENVOLVIMENTO DA RODA COM NIÓBIO

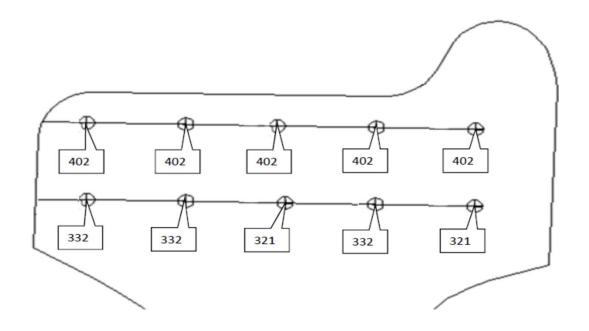
• Fragilização da martensita revenida (Resultado)

Tração a frio no aro

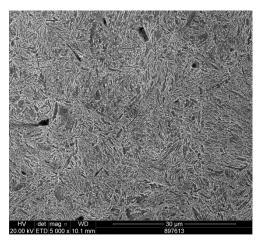
Roda	Escoamento (MPa)	Resistência (MPa)	Alongamento (%)	Redução de Área (%)
897604	844,6	1118,4	15,46	40,36
897604	847,1	1131,5	14,24	38,75
897611	889,2	1143,5	15,82	40,64
897611	869,2	1147,8	15,32	41,65
897613	1031,3	1228	15,02	39,37
897613	885,2	1139	14,46	41,5
Média	894,4	1151,4	15,05	40,38
AAR - D	> 760	> 1083	> 14	> 15
Classe C	770	1.100	11	25

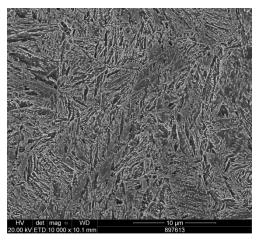
• Tração a quente no aro (538 °C – 1.000 °F)

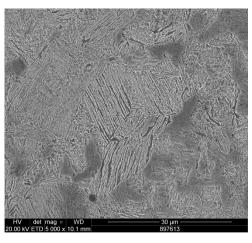
Roda	Escoamento (MPa)	Resistência (MPa)	Alongamento (%)	Redução de Área (%)
897604	458	607	23	75
897604	468	618	26	75
897611	512	617	25	76
897611	589	662	22	76
897613	519	614	24	76
897613	544	628	27	76
Média	515	624,3	24	76
AAR - D	> 345	> 483	> 20	> 40


Tenacidade a fratura (K1c)

Roda	A (MPa \sqrt{m})	B (MPa \sqrt{m})	C (MPa \sqrt{m})
897604	59,48	52,42	54,56
897611	61,6	75,7	71,6
897613	75,03	70,2	62,04
Média		64,7	
AAR - D		> 40	


Mapa de dureza (321 – 415 Brinell)




Microestrutura

1 mm da pista (bainita)

5 mm da pista (bainita)

15 mm da pista (perlita fina)

CONCLUSÃO

- A roda microligada com nióbio atende todos os requisitos da norma AAR para classe D.
- O nióbio mostrou ser eficiente no refinamento de grão da roda forjada.
- A determinação da faixa de fragilização da martensita revenida garante segurança no processo de tratamento térmico.
- A microestrutura bainita perlita fina apresentou alta dureza aliada com alta tenacidade, fatores que garantem baixo desgaste e segurança operacional.

Agradecimentos:

- UNICAMP (Prof. Dr. Paulo Roberto Mei)
- CBMM (Eng. Marcos Stuart)
- Profissionais do laboratório da MWL Brasil

WWW.ANTF.ORG.BR

Contato: domingos@mwlbrasil.com.br